Neural Variational Document Model

Tensorflow implementation of Neural Variational Inference for Text Processing.

model_demo

This implementation contains:

  1. Neural Variational Document Model
    • Variational inference framework for generative model of text
    • Combines a stochastic document representation with a bag-of-words generative model
  2. Neural Answer Selection Model (in progress)
    • Variational inference framework for conditional generative model of text
    • Combines a LSTM embeddings with an attention mechanism to extract the semantics between question and answer

Prerequisites

Usage

To train a model with Penn Tree Bank dataset:

$ python main.py --dataset ptb

To test an existing model:

$ python main.py --dataset ptb --forward_only True

Results

Training details of NVDM. The best result can be achieved by onehost updates, not alternative updates.

scalar

histogram

Author

Taehoon Kim / @carpedm20

::...
免责声明:
当前网页内容, 由 大妈 ZoomQuiet 使用工具: ScrapBook :: Firefox Extension 人工从互联网中收集并分享;
内容版权归原作者所有;
本人对内容的有效性/合法性不承担任何强制性责任.
若有不妥, 欢迎评注提醒:

或是邮件反馈可也:
askdama[AT]googlegroups.com


订阅 substack 体验古早写作:


点击注册~> 获得 100$ 体验券: DigitalOcean Referral Badge

关注公众号, 持续获得相关各种嗯哼:
zoomquiet


自怼圈/年度番新

DU22.4
关于 ~ DebugUself with DAMA ;-)
粤ICP备18025058号-1
公安备案号: 44049002000656 ...::